# An indirect method for the electrosynthesis of monochloroamine

# B. V. Lyalin and V. A. Petrosyan\*

N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp., 117913 Moscow, Russian Federation. Fax: +7 (095) 135 5328

An indirect two-stage method for the electrosynthesis of NH<sub>2</sub>Cl was elaborated. In the first stage, NH<sub>4</sub>Cl was electrolyzed in a nondivided cell in the NaCl (aqueous solution)—CCl<sub>4</sub> heterophase system to give NCl<sub>3</sub> as a solution in CCl<sub>4</sub>. Under the optimum conditions, the yield of NCl<sub>3</sub> was 80%, and the current efficiency 60%. In the second stage, the obtained solution reacted with an aqueous solution of NH<sub>3</sub> to give an aqueous solution of NH<sub>2</sub>Cl in 50% yield (converted to NH<sub>3</sub>).

Key words: electrochemical chlorination, monochloroamine, trichloroamine, ammonia, ammonium chloride.

Monochloroamine is an important intermediate product in both organic and inorganic synthesis (e.g., see Refs. 1 and 2), whose electrochemical preparation has not been described so far. Based on the data of the preceding studies on the electrosynthesis of N-chloroderivatives, we attempted to synthesize monochloroamine by anodic electrolysis of an aqueous solution containing both NaCl and NH<sub>3</sub>. Note that there is also no literature information on the regularities of electrochemical chlorination (EC) of NH<sub>3</sub>.

Since NH<sub>2</sub>Cl, an expected product of the anodic chlorination of NH<sub>3</sub>, is capable of being easily reduced, the electrolysis of an aqueous solution of NaCl in the presence of NH<sub>3</sub> was carried out in a divided cell.

### Results and Discussion

The conditions of electrolysis being varied, viz, the concentration of NH<sub>3</sub> (0.5–2.0 mol L<sup>-1</sup>) and NaCl (2.0 mol L<sup>-1</sup> (a saturated solution)), the temperature (0–20 °C), and the current density (10–50 A dm<sup>-2</sup>), the process was found in all cases to be accompanied by vigorous nitrogen evolution and the formation of a considerable amount of NH<sub>4</sub>Cl and a minor (yield up to 5%) amount of NCl<sub>3</sub> (Table 1). Only when the quantity of electricity that passes through the solution was raised from 1 F to 2 F per one mole of the initial amine did the electrolysis yield NH<sub>2</sub>Cl according to the equation

In this case, however, the yield of  $NH_2Cl$  did not exceed 0.1% (UV analysis). The low yield of the target product can be explained by the following reactions occurring during the electrolysis:

$$2 NH_3 + NH_2CI \longrightarrow NH_4CI + N_2H_4 \xrightarrow{2 NH_2CI}$$

$$\longrightarrow N_2 \uparrow + 2 NH_4CI, \qquad (Ia)$$

$$4 H_2 O + N_2 H_4 \xrightarrow{-4e} N_2 \uparrow + 4 H_3 O^+,$$
 (1b)

$$H_3O^+ + NH_3 + CI^- \longrightarrow NH_4CI + H_2O,$$
 (1c)

$$4 H_2O + NH_4CI + 2 CI^- \xrightarrow{-6e} NCl_3 + 4 H_3O^+$$
. (1d)

Thus, NH<sub>2</sub>Cl formed initially upon EC of NH<sub>3</sub> easily reacted (cf. Ref. 4) with an excess of NH<sub>3</sub> to give N<sub>2</sub>H<sub>4</sub>, which, in turn, reacted in part with NH<sub>2</sub>Cl according to reaction (1a) and, on the other hand, was oxidized on the anode according to reaction (1b). The

Table 1. The influence of the electrolysis conditions on the yield of NCl<sub>3</sub>

| Run | $C/\text{mol } L^{-1}$ |                 | T/°C | $I/A  dm^{-2}$ | Current effi- |  |
|-----|------------------------|-----------------|------|----------------|---------------|--|
|     | NCI <sub>3</sub>       | NH <sub>3</sub> |      |                | ciency (%)    |  |
| 1   | 5                      | 0.5             | 5    | 20             | 4.8           |  |
| 2   | 4                      | 0.5             | 5    | 20             | 4.5           |  |
| 3   | 3                      | 0.5             | 5    | 20             | 4.2           |  |
| 4   | 2                      | 0.5             | 5    | 20             | 4.0           |  |
| 5   | 4                      | 1.0             | 5    | 20             | 4.0           |  |
| 6   | 4                      | 2.0             | 5    | 20             | 3.5           |  |
| 7   | 4                      | 0.5             | 0    | 20             | 5.0           |  |
| 8   | 4                      | 0.5             | 10   | 20             | 3.5           |  |
| 9   | 4                      | 0.5             | 20   | 20             | 3.0           |  |
| 10  | 4                      | 0.5             | 5    | 10             | 2.8           |  |
| 11  | 4                      | 0.5             | 5    | 50             | 5.3           |  |

Note. The reaction conditions:  $H_2O$ , Ru-Ti oxide anode, Q = 1 F per 1 mole of  $NH_3$ .

formation of NCl<sub>3</sub> is apparently due to the fact that the concentration of NH<sub>3</sub> consumed in reactions (1a) and (1c) gradually decreases. In this case, NH<sub>4</sub>Cl, which is less reactive but accumulated in the solution, undergoes EC according to reaction (1d).

To prevent side reactions (1a)—(1d), we decreased the current concentration of  $NH_3$  in solution by using the salt  $NH_4HCO_3$  instead of free  $NH_3$  and by conducting the electrolysis under the above-mentioned conditions. However, in this case, the electrolysis also yielded  $N_2$  and  $NH_4Cl$  as the main reaction products. In all probability, this is due<sup>4</sup> to the high rate of reaction of  $NH_2Cl$  with  $NH_3$ , which is formed in minor amounts upon hydrolysis of  $NH_4HCO_3$ .

Insofar as it appeared impossible to carry out the direct electrosynthesis of  $NH_2Cl$ , we attempted to carry out this process indirectly. In this connection, two approaches were studied.

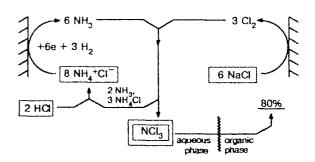
The first approach was based on the method of quantitative (yield  $\geq 95\%$ ) electrosynthesis of sodium N-chlorobenzenesulfonamide (chloroamine "B") we had elaborated earlier.<sup>3</sup> This compound is a mild chlorinating agent, which could be used for preparation of an aqueous solution of NH<sub>2</sub>Cl. In addition, the successful solution of this problem would enable carrying out an electrocatalytic cycle with regenerated chloroamine "B".

However, in the study of the reaction of aqueous solutions of chloroamine "B" and NH<sub>3</sub> (0 °C) it was established (UV spectroscopy) that this process (2) is reversible, the equilibrium being almost completely shifted to the initial compounds.

Another attempt to prepare an aqueous solution of NH<sub>2</sub>Cl involved NH<sub>4</sub>Cl instead of NH<sub>3</sub> on the assumption that equilibrium (2) would be shifted to NH<sub>2</sub>Cl owing to the formation of insoluble PhSO<sub>2</sub>NH<sub>2</sub>:

However, this method was also incorrect because the rather unstable NH<sub>2</sub>Cl decomposed during prolonged separation of microcrystalline precipitate of PhSO<sub>2</sub>NH<sub>2</sub>.

The second approach to the indirect electrosynthesis of NH<sub>2</sub>Cl was based on the possibility to obtain NCl<sub>3</sub> electrochemically<sup>5</sup> and the known data<sup>6</sup> on the equilibrium existing in mixtures of NH<sub>3</sub> and NCl<sub>3</sub>:


$$2 \text{ NH}_2\text{Cl} \xrightarrow{+\text{H}^+}_{-\text{H}^+} \text{NH}_4^+ + \text{NHCl}_2 \xrightarrow{-2/3\text{H}^+}_{+2/3\text{H}^+} 2/3 \text{ NCl}_3 + 4/3 \text{ NH}_4^+.$$

Thus, the process of synthesis of NH<sub>2</sub>Cl, studied within this approach, includes two stages:

2 HCl + NH<sub>4</sub>Cl 
$$\xrightarrow{-e}$$
 NCl<sub>3</sub> + 3 H<sub>2</sub> $\uparrow$ , NCl<sub>3</sub> + 2 NH<sub>3</sub>  $\longrightarrow$  3 NH<sub>2</sub>Cl.

While fixing the first stage, we fundamentally improved the earlier described<sup>5</sup> process of synthesis of NCl<sub>3</sub> in an electrolyzer of complex construction with the separate anodic and cathodic compartments and blowing of the target product from the electrolyte with an inert gas. The electrosynthesis of NCl<sub>3</sub> was carried out by us in a nondivided cell in the CCl<sub>4</sub>—aqueous solution of NH<sub>4</sub>Cl heterophase system containing NaCl for the purpose of increasing the electric conductivity of the medium. During electrolysis, the target product was effectively extracted by the heterophase, which prevented its reduction on the cathode. As a whole, the proposed method of synthesis of NCl<sub>3</sub> can be illustrated by Scheme 1.

#### Scheme 1



In prolonged electrolysis, NCl<sub>3</sub> reacted with ammonia according to the reaction

This undesirable process was suppressed by addition of two moles of HCl for binding two excess moles of NH<sub>3</sub> (see Scheme 1). Variation of electrolysis parameters allowed one to determine the optimum conditions of electrosynthesis of NCl<sub>3</sub>:  $C_{\rm NH_4Cl}=0.8$  mol L<sup>-1</sup>;  $C_{\rm Nacl}=4$  mol L<sup>-1</sup>;  $C_{\rm$ 

While fixing the second stage of the process, we studied the reaction of a solution of NCl<sub>3</sub> in CCl<sub>4</sub> with an aqueous solution of NH<sub>3</sub> by UV spectroscopy. Even in the first experiments, both nitrogen as the main product of the known<sup>8</sup> reaction:

$$NCl_3 + 4 NH_3 \longrightarrow N_2 \uparrow + 3 NH_4 CI, \qquad (3)$$

and small amounts of NH<sub>2</sub>Cl (yield 3-5%) were detected. To optimize this process, we studied the depen-

Table 2. The influence of the experimental conditions on the yield of NH<sub>2</sub>Cl in the reaction of NCl<sub>3</sub> with NH<sub>3</sub>

| Run | Ratio                 |       | n Yield<br>of NH <sub>2</sub> Cl | Temperature of mixing | Reaction time |
|-----|-----------------------|-------|----------------------------------|-----------------------|---------------|
|     | NCl <sub>3</sub> : NH | 3     | %*                               | /°C                   | /min          |
| 1   | 1:2                   | 87.0  | 3.0                              | 20                    | 5             |
| 2   | 1:2                   | 75.0  | 5.1                              | 10                    | 5             |
| 3   | 1:2                   | 10.0  | 40.0                             | 0                     | 5             |
| 4   | 1:8                   | 60.0  | 45.0                             | 0                     | 5             |
| 5   | 1:20                  | 95.0  | 45.0                             | 0                     | 5             |
| 6   | 1:20                  | 95.0  | 49.5                             | 0                     | 3             |
| 7   | 1:40                  | 100.0 | 40.0                             | 0                     | 3             |
| 8   | 1:20                  | 95.0  | 50.0                             | 0                     | 2             |
| 9   | 1:20                  | 80.0  | 50.0                             | 0                     | 1             |

Note. The reaction conditions:  $C_{NCl_3}$  in the aqueous phase = 1 mol L<sup>-1</sup>;  $C_{NH_3}$  in  $CCl_4$  = 12 mol L<sup>-1</sup>.

dence of the chloroamine yield on the process conditions. The data obtained are presented in Table 2.

It turned out that the yield of NH<sub>2</sub>Cl increases as the temperature decreases (cf. runs 1-3), reaching 40% at 0 °C. However, despite the satisfactory yield of NH<sub>2</sub>Cl (run 3), the conversion of NCl<sub>3</sub> was minor (~10%), which is likely due to the low rate of heterophase reaction (3). To increase the conversion of NCl<sub>3</sub>, we studied how a change in the molar ratio NCl<sub>3</sub>: NH<sub>3</sub> influences reaction (3) (runs 3-5, and 7). The best results were obtained at the ratio NCl<sub>3</sub>: NH<sub>3</sub> = 1: 20 (run 5), the conversion of NCl<sub>3</sub> reaching 95% and the yield of NH<sub>2</sub>Cl reaching 45%. It was further demonstrated that these parameters depend on the reaction duration (cf. runs 5, 6, 8, and 9), deteriorating as it increases.

As a whole, the data obtained made it possible to determine the optimum reaction conditions, viz., the molar ratio  $NCl_3: NH_3 = 1: 20$ , the reaction time 2 min, and the temperature 0 °C, under which the yield of  $NH_2Cl$  in an aqueous solution amounted to 50% (based on  $NCl_3$ ) at an  $NCl_3$  conversion of 95%. Apparently, the moderate yield of the target product is due to its decomposition in the reaction with  $NH_3$  according to (1a).

It is worthy of note that there is no literature data on the formation of NH<sub>2</sub>Cl by the reaction of NCl<sub>3</sub> with NH<sub>3</sub>. To date, it has been assumed<sup>8</sup> that the reaction of NCl<sub>3</sub> with NH<sub>3</sub> is described by reaction (3). Although we did not perform special studies on the mechanism of this reaction, the data we obtained suggest that reaction (3) describes only the overall process. The mechanism of interaction of NCl<sub>3</sub> with NH<sub>3</sub> seems to include both the stage of formation of NH<sub>2</sub>Cl and its decomposition owing to the subsequent reaction with NH<sub>3</sub>. Here, the fundamental fact is that we found conditions enabling one to inhibit reaction (3) in the stage of formation of NH<sub>2</sub>Cl.

## Experimental

Amperostatic electrochlorination was carried out in divided and nondivided cells equipped with a jacket for thermostatic control. A B 5-8 direct current source was used. A coulometer (constructed at SKB IOKh) was connected in the circuit. The reaction mixture was stirred with a magnetic stirrer. Since such electrolysis products as NH<sub>2</sub>Cl and NCl<sub>3</sub> are unstable in the individual state, they were identified and their concentrations determined in solution by UV spectroscopy on a Specord UV-VIS instrument. The literature data 6 on  $\lambda_{\rm max}/{\rm nm}$ : 244 ( $\epsilon$  443) for NH<sub>2</sub>Cl in water and 340 ( $\epsilon$  285) for NCl<sub>3</sub> in CCl<sub>4</sub> were used.

Electrochlorination of NH<sub>3</sub>. A saturated solution of NaCl (100 mL) and a 25% aqueous solution of NH<sub>3</sub> (0.05 mol, 45 mL) were placed into the anodic compartment of a divided cell. The cathodic compartment contained a saturated solution of NaCl (100 mL). A Ru-Ti oxide plate ( $S = 10 \text{ cm}^2$ ) served as an anode, and a graphite rod served as a cathode. Electrolysis was carried out at a current of 2 A and 5 °C and terminated after 1 F of electricity per 1 mole of NH<sub>3</sub> (Q = 4800 C) had been passed. The reaction mixture was stirred for 30 min, and the reaction products were extracted with 3×10 mL of CCl<sub>4</sub>. The extracts were combined and analyzed. NCl<sub>3</sub> (yield 4.8%) was found in the organic phase, while NH<sub>4</sub>Cl and a small amount of NH<sub>2</sub>Cl (yield 0.1%) were found in the aqueous phase.

Electrochlorination of NH<sub>4</sub>HCO<sub>3</sub>. A saturated solution of NaCl (100 mL) and NH<sub>4</sub>HCO<sub>3</sub> (3.9 g, 0.05 mol) were placed into the anodic compartment of a cell. The electrolysis was carried out as described above. The yield of NCl<sub>3</sub> was 4%.

Electrochemical preparation of NCl<sub>3</sub>. A 4  $\dot{M}$  solution of NaCl (100 mL), NH<sub>4</sub>Cl (1.6 g, 0.03 mol), conc. HCl (0.01 mol, 0.9 mL), and CCl<sub>4</sub> (33 mL) were placed into a nondivided cell. The electrolysis was carried out with a Ru-Ti oxide anode and a Ti cathode of the same size ( $S=20~{\rm cm}^2$ ) at a current of 4 A and 10 °C. During the electrolysis, conc. HCl (0.06 mol, 5.4 mL) was added portionwise into the reaction mixture. The electrolysis was terminated after 6 F of electricity ( $Q=17370~{\rm C}$ ) per 1 mole of NH<sub>4</sub>Cl had been passed. The reaction mixture was stirred for 30 min, whereupon the aqueous and organic layers were separated and analyzed. The conversion of NH<sub>4</sub>Cl in the aqueous phase was determined according to the known procedure. The yield of NCl<sub>3</sub> in the organic phase was 80% (based on the initial compound).

Attempted preparation of NH<sub>2</sub>Cl from PbSO<sub>2</sub>N(Na)Cl and NH<sub>4</sub>Cl. A solution of PhSO<sub>2</sub>N(Na)Cl (4.62 g, 0.02 mol) in 30 mL of water was placed into a 100-mL glass, cooled to 0 °C, and a solution of NH<sub>4</sub>Cl (1.07 g, 0.02 mol) in 10 mL of water was added rapidly with stirring. The reaction mixture was kept at 0 °C for 5 min, and the fine crystalline precipitate that formed was filtered off. The aqueous solution (after filtration) contained 0.0004 moles of NH<sub>2</sub>Cl (yield 2%).

Attempted preparation of  $NH_2CI$  from  $PhSO_2N(Na)CI$  and  $NH_3$ . A solution of  $PhSO_2N(Na)CI$  (4.62 g, 0.02 mol) in 30 mL of water was placed into a 100-mL glass, cooled to 0 °C, and a concentrated solution of  $NH_3$  (0.02 mol, 1.5 mL) in 10 mL of water was fast added with stirring. The reaction mixture was stirred at 0 °C for 5 min and analyzed. The yield of  $NH_2CI$  was 1.5%.

Synthesis of NH<sub>2</sub>Cl from NCl<sub>3</sub> and NH<sub>3</sub> (see Table 2, run 6). A concentrated aqueous solution of NH<sub>3</sub> (0.32 mol, 27.0 mL) and ice (30 g) were placed into a round-bottomed flask of 250 mL volume, and a solution of NCl<sub>3</sub> (0.016 mol, 16 mL) in CCl<sub>4</sub> was added rapidly. The reaction mixture was

<sup>•</sup> The conversion of NCl<sub>3</sub> and the yield of NH<sub>2</sub>Cl were determined by UV spectrophotometry.

vigorously stirred for 3 min, and then the aqueous and organic layers were separated. The aqueous phase contained 0.0238 moles of NH<sub>2</sub>Cl (yield 49.5%), and the organic phase contained traces of NCl<sub>3</sub> (conversion of NCl<sub>3</sub> was 95%).

An indirect electrosynthesis of monochloroamine

This work was financially supported by the Russian Foundation for Basic Research (Project No. 97-03-33005).

#### References

I. W. R. Charles and R. N. Mesial, US Pat. 3.254.952, Chem. Abstrs., 1966, 65, 5072h.

- 2. E. Schmitz, V. Bicker, and Shramm, J. Pract. Chem., 1978, 320 (3), 413.
- 3. B. V. Lyalin and V. A. Petrosyan, Elektrokhimiya, 1995, 10, 1146 [Russ. J. Electrochem., 1995, 10 (Engl. Transl.)].
- 4. H. Delalu and R. Cohen-Aded, J. Chem. Phys. Phys.-Chim. biol., 1979, 76, 465.
- 5. E. Standt, US Pat.2.118.503, Chem. Abstrs., 1938, 32, 5313.
- 6. C. Colin, M. Brunetto, and R. Roset, Analysis, 1987, 15, 265.
- 7. Handbuch der praporativen anorganishen Chemie, Ed., G. Brauer, Ferdinand Enke, Stuttgart, 1975-1981, vol. 2.
- 8. Wessanen's Koninklejke and N. V. Fabriken, Dutch, 1950, 66, 759; Chem. Abstrs., 1951, 45, 4897h.

Received December 5, 1997; in revised form February 27, 1998